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We considered another coupled oscillator problem — the double pendulum. We wrote
down the Lagrangian, which turned out to be quite complicated. It leads to nonlinear
equations of motion — as is well known for the single pendulum. To avoid this problem
(which we will deal with later), we made a “small oscillations” approximation for the double
pendulum. In this approximation we take ¢, ¢,, ¢, and ¢, to be small, and only keep
terms up to second order in these quantities. We then did a Taylor series expansion for the
kinetic energy and potential energy to arrive at an approximate Lagrangian of the form:
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the kinetic energy and the potential energy are homogeneous quadratic functions.

We then used Lagrange’s equations to find the equations of motion for the two
generalized coordinates ¢, ¢, with the following results:

$1-equation: —(my + my) gLy = (my + my)L2dy + myLiLyh,

¢,-equation: —m, gL, ¢, = mZLlLZdil + mzL%diz

These two equations can be summarized in matrix form as 17(13 = —I?q_b), with q_5 = (¢1),
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7= (my +my)L5 mlefz and K = ((m1 +my)gly 0
myL,L, m,L3 0 mygL,
now made up of rotational inertia terms, while the “spring constant matrix” is made up of
restoring torque terms. We again use the complex ansatz for the solution vector: $(t) =

). The “mass matrix” is

Re[Ce't], where C = (gl) and C; and C, are complex constants. Putting this into the
2
matrix equation yields (17 — w21\7)5 = 0. To get a non-trivial solution for ¢, we demand

that det(l? — w21\7) = 0. This yields a quadratic equation for w?, with two solutions.

We then considered the special case of a double pendulum with equal masses (m) and
equal lengths (L), and introduce the natural frequency (w3 = g/L). The determinant yields

two normal mode frequency solutions: w; = wyv2 — V2, and w, = wyv 2 + V2. The
corresponding normal modes are the analogs of the “sloshing” and “beating” modes. The

first is of the form ¢ = 4, (\/%) cos(w,t — 6;), while the second is
q_5 = A, (—}E) cos(w,t — &,). In the first normal mode the two pendula swing together in
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phase (the sloshing mode), with the lower pendulum swinging with greater amplitude. In the
other mode the two pendula swing 180° out of phase (a type of beating mode).

We then went on to consider the most general coupled oscillator problem — N particles
coupled to each other by means of springs or any other types of forces that produce a stable
equilibrium configuration. This system has n generalized coordinates, where in general
n # N. The generalized coordinates are written as ¢ = (g4, g2, -.-4,). We assume that only
conservative forces act between the particles, hence (as known from previous studies) the
potential energy is a function only of the coordinates: U = U(q). The kinetic energy is that

of all of the particles in the system: T = %Z’;’zl marif. The “raw” coordinates 7,can be

written in terms of the generalized coordinates as 7, = 7,,(q1, 92, ... 45), Where it is assumed
that no explicit time-dependence is required to write down this transformation. The Kinetic
energy can be writtenas T = % i=1 % j=14ij 4:q;, where the matrix A is defined as A =

N_ m, Z—Zf%. Note that the double pendulum kinetic energy (see the Lagrangian above)
i 94j

has a kinetic energy of this form, including a g, ¢, term. Note that the matrix A is a function

of the generalized coordinates as well: 4 = A(§). We now have the full Lagrangian of this

generalized coupled oscillator problem £ = T(§,¢) — U(@).



