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We considered another coupled oscillator problem – the double pendulum.  We wrote 
down the Lagrangian, which turned out to be quite complicated.  It leads to nonlinear 
equations of motion – as is well known for the single pendulum.  To avoid this problem 
(which we will deal with later), we made a “small oscillations” approximation for the double 
pendulum.  In this approximation we take 𝜙1, 𝜙2, 𝜙̇1, and 𝜙̇2 to be small, and only keep 
terms up to second order in these quantities.   We then did a Taylor series expansion for the 
kinetic energy and potential energy to arrive at an approximate Lagrangian of the form: 
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the kinetic energy and the potential energy are homogeneous quadratic functions. 

We then used Lagrange’s equations to find the equations of motion for the two 
generalized coordinates 𝜙1, 𝜙2, with the following results:  

𝜙1-equation: −(𝑚1 + 𝑚2)𝑔𝐿1𝜙1 = (𝑚1 + 𝑚2)𝐿12𝜙̈1 + 𝑚2𝐿1𝐿2𝜙̈2 

𝜙2-equation: −𝑚2𝑔𝐿2𝜙2 = 𝑚2𝐿1𝐿2𝜙̈1 + 𝑚2𝐿22𝜙̈2 

These two equations can be summarized in matrix form as 𝑀�𝜙�⃗ ̈ = −𝐾�𝜙�⃗ , with 𝜙�⃗ = �𝜙1𝜙2
�, 
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now made up of rotational inertia terms, while the “spring constant matrix” is made up of 
restoring torque terms.  We again use the complex ansatz for the solution vector: 𝜙�⃗ (𝑡) =

𝑅𝑒�𝐶𝑒𝑖𝜔𝑡�, where 𝐶 = �𝐶1𝐶2
�, and 𝐶1 and 𝐶2 are complex constants.  Putting this into the 

matrix equation yields �𝐾� − 𝜔2𝑀��𝐶 = 0.  To get a non-trivial solution for 𝐶, we demand 
that 𝑑𝑒𝑡�𝐾� − 𝜔2𝑀�� = 0.  This yields a quadratic equation for 𝜔2, with two solutions. 

We then considered the special case of a double pendulum with equal masses (𝑚) and 
equal lengths (𝐿), and introduce the natural frequency (𝜔0

2 ≡ 𝑔/𝐿).  The determinant yields 

two normal mode frequency solutions: 𝜔1 = 𝜔0�2 − √2, and 𝜔2 = 𝜔0�2 + √2.  The 
corresponding normal modes are the analogs of the “sloshing” and “beating” modes.  The 

first is of the form 𝜙�⃗ = 𝐴1 �
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√2� cos(𝜔1𝑡 − 𝛿1), while the second is 
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−√2� cos(𝜔2𝑡 − 𝛿2).  In the first normal mode the two pendula swing together in 
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phase (the sloshing mode), with the lower pendulum swinging with greater amplitude.  In the 
other mode the two pendula swing 180o out of phase (a type of beating mode). 

We then went on to consider the most general coupled oscillator problem – 𝑁 particles 
coupled to each other by means of springs or any other types of forces that produce a stable 
equilibrium configuration.  This system has 𝑛 generalized coordinates, where in general 
𝑛 ≠ 𝑁.  The generalized coordinates are written as 𝑞⃗ = (𝑞1,𝑞2, … 𝑞𝑛).  We assume that only 
conservative forces act between the particles, hence (as known from previous studies) the 
potential energy is a function only of the coordinates: 𝑈 = 𝑈(𝑞⃗).  The kinetic energy is that 
of all of the particles in the system: 𝑇 = 1
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written in terms of the generalized coordinates as 𝑟𝛼 = 𝑟𝛼(𝑞1,𝑞2, … 𝑞𝑛), where it is assumed 
that no explicit time-dependence is required to write down this transformation.  The kinetic 
energy can be written as 𝑇 = 1
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𝑁
𝛼=1 .  Note that the double pendulum kinetic energy (see the Lagrangian above) 

has a kinetic energy of this form, including a 𝑞̇1𝑞̇2 term.  Note that the matrix 𝐴̿ is a function 
of the generalized coordinates as well: 𝐴̿ = 𝐴̿(𝑞⃗).  We now have the full Lagrangian of this 
generalized coupled oscillator problem ℒ = 𝑇�𝑞⃗, 𝑞̇⃗� − 𝑈(𝑞⃗).   


